Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(15): eadk0002, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598630

RESUMEN

Continuity of behaviors requires animals to make smooth transitions between mutually exclusive behavioral states. Neural principles that govern these transitions are not well understood. Caenorhabditis elegans spontaneously switch between two opposite motor states, forward and backward movement, a phenomenon thought to reflect the reciprocal inhibition between interneurons AVB and AVA. Here, we report that spontaneous locomotion and their corresponding motor circuits are not separately controlled. AVA and AVB are neither functionally equivalent nor strictly reciprocally inhibitory. AVA, but not AVB, maintains a depolarized membrane potential. While AVA phasically inhibits the forward promoting interneuron AVB at a fast timescale, it maintains a tonic, extrasynaptic excitation on AVB over the longer timescale. We propose that AVA, with tonic and phasic activity of opposite polarities on different timescales, acts as a master neuron to break the symmetry between the underlying forward and backward motor circuits. This master neuron model offers a parsimonious solution for sustained locomotion consisted of mutually exclusive motor states.


Asunto(s)
Proteínas de Caenorhabditis elegans , Neuronas , Animales , Caenorhabditis elegans/fisiología , Interneuronas/fisiología
2.
Elife ; 122024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564369

RESUMEN

Evolutionary transitions from egg laying (oviparity) to live birth (viviparity) are common across various taxa. Many species also exhibit genetic variation in egg-laying mode or display an intermediate mode with laid eggs containing embryos at various stages of development. Understanding the mechanistic basis and fitness consequences of such variation remains experimentally challenging. Here, we report highly variable intra-uterine egg retention across 316 Caenorhabditis elegans wild strains, some exhibiting strong retention, followed by internal hatching. We identify multiple evolutionary origins of such phenotypic extremes and pinpoint underlying candidate loci. Behavioral analysis and genetic manipulation indicates that this variation arises from genetic differences in the neuromodulatory architecture of the egg-laying circuitry. We provide experimental evidence that while strong egg retention can decrease maternal fitness due to in utero hatching, it may enhance offspring protection and confer a competitive advantage. Therefore, natural variation in C. elegans egg-laying behaviour can alter an apparent trade-off between different fitness components across generations. Our findings highlight underappreciated diversity in C. elegans egg-laying behavior and shed light on its fitness consequences. This behavioral variation offers a promising model to elucidate the molecular changes in a simple neural circuit underlying evolutionary shifts between alternative egg-laying modes in invertebrates.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Oviposición/genética , Oviparidad , Proteínas de Caenorhabditis elegans/genética , Evolución Biológica
3.
Gene ; 897: 148076, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38086455

RESUMEN

BACKGROUND: Among KCNH2 missense loss of function (LOF) variants, homozygosity -at any position in the Kv11.1/hERG channel - is very rare and generally leads to intrauterine death, while heterozygous variants in the pore are responsible for severe Type 2 long-QT syndrome (LQTS). We report a novel homozygous p.Gly603Ser missense variant in the pore of Kv11.1/hERG (KCNH2 c.1807G > A) discovered in the context of a severe LQTS. METHODS: We carried out a phenotypic family study combined with a functional analysis of mutated and wild-type (WT) Kv11.1 by two-electrode voltage-clamp using the Xenopus laevis oocyte heterologous expression system. RESULTS: The variant resulted in a severe LQTS phenotype (very prolonged corrected QT interval, T-wave alternans, multiple Torsades de pointes) with a delayed clinical expression in later childhood in the homozygous state, and in a Type 2 LQTS phenotype in the heterozygous state. Expression of KCNH2 p.Gly603Ser cRNA alone elicited detectable current in Xenopus oocytes. Inactivation kinetics and voltage dependence of activation were not significantly affected by the variant. The macroscopic slope conductance of the variant was three-fold less compared to the WT (18.5 ± 9.01 vs 54.7 ± 17.2 µS, p < 0.001). CONCLUSIONS: We characterized the novel p.Gly603Ser KCNH2 missense LOF variant in the pore region of Kv11.1/hERG leading to a severe but viable LQTS in the homozygous state and an attenuated Type 2 LQTS in heterozygous carriers. To our knowledge we provide the first description of a homozygous variant in the pore-forming region of Kv11.1 with a functional impact but a delayed clinical expression.


Asunto(s)
Canal de Potasio ERG1 , Síndrome de QT Prolongado , Niño , Humanos , Canal de Potasio ERG1/genética , Síndrome de QT Prolongado/genética , Mutación Missense , Fenotipo , Linaje
4.
PLoS One ; 17(1): e0253351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35041685

RESUMEN

Multiple advances have been made to increase the efficiency of CRISPR/Cas9 editing using the model genetic organism Caenorhabditis elegans (C. elegans). Here we report on the use of co-CRISPR 'marker' genes: worms in which co-CRISPR events have occurred have overt, visible phenotypes which facilitates the selection of worms that harbour CRISPR events in the target gene. Mutation in the co-CRISPR gene is then removed by outcrossing to wild type but this can be challenging if the CRISPR and co-CRISPR gene are hard to segregate. However, segregating away the co-CRISPR modified gene can be less challenging if the worms selected appear wild type and are selected from a jackpot brood. These are broods in which a high proportion of the progeny of a single injected worm display the co-CRISPR phenotype suggesting high CRISPR efficiency. This can deliver worms that harbour the desired mutation in the target gene locus without the co-CRISPR mutation. We have successfully generated a discrete mutation in the C. elegans nlg-1 gene using this method. However, in the process of sequencing to authenticate editing in the nlg-1 gene we discovered genomic rearrangements that arise at the co-CRISPR gene unc-58 that by visual observation were phenotypically silent but nonetheless resulted in a significant reduction in motility scored by thrashing behaviour. This highlights that careful consideration of the hidden consequences of co-CRISPR mediated genetic changes should be taken before downstream analysis of gene function. Given this, we suggest sequencing of co-CRISPR genes following CRISPR procedures that utilise phenotypic selection as part of the pipeline.


Asunto(s)
Genotipo
5.
Mol Genet Metab ; 134(1-2): 195-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34412939

RESUMEN

Neurobeachin (NBEA) was initially identified as a candidate gene for autism. Recently, variants in NBEA have been associated with neurodevelopmental delay and childhood epilepsy. Here, we report on a novel NBEA missense variant (c.5899G > A, p.Gly1967Arg) in the Domain of Unknown Function 1088 (DUF1088) identified in a child enrolled in the Undiagnosed Diseases Network (UDN), who presented with neurodevelopmental delay and seizures. Modeling of this variant in the Caenorhabditis elegans NBEA ortholog, sel-2, indicated that the variant was damaging to in vivo function as evidenced by altered cell fate determination and trafficking of potassium channels in neurons. The variant effect was indistinguishable from that of the reference null mutation suggesting that the variant is a strong hypomorph or a complete loss-of-function. Our experimental data provide strong support for the molecular diagnosis and pathogenicity of the NBEA p.Gly1967Arg variant and the importance of the DUF1088 for NBEA function.


Asunto(s)
Proteínas Portadoras/genética , Epilepsia/genética , Variación Genética , Proteínas del Tejido Nervioso/genética , Trastornos del Neurodesarrollo/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Niño , Femenino , Edición Génica , Humanos , Patología Molecular , Canales de Potasio/metabolismo
6.
Sci Adv ; 7(6)2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536214

RESUMEN

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.

7.
Nat Commun ; 10(1): 787, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30770809

RESUMEN

Mutations that modulate the activity of ion channels are essential tools to understand the biophysical determinants that control their gating. Here, we reveal the conserved role played by a single amino acid position (TM2.6) located in the second transmembrane domain of two-pore domain potassium (K2P) channels. Mutations of TM2.6 to aspartate or asparagine increase channel activity for all vertebrate K2P channels. Using two-electrode voltage-clamp and single-channel recording techniques, we find that mutation of TM2.6 promotes channel gating via the selectivity filter gate and increases single channel open probability. Furthermore, channel gating can be progressively tuned by using different amino acid substitutions. Finally, we show that the role of TM2.6 was conserved during evolution by rationally designing gain-of-function mutations in four Caenorhabditis elegans K2P channels using CRISPR/Cas9 gene editing. This study thus describes a simple and powerful strategy to systematically manipulate the activity of an entire family of potassium channels.


Asunto(s)
Potenciales de la Membrana/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Drosophila , Evolución Molecular , Humanos , Invertebrados , Potenciales de la Membrana/genética , Mutación/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Vertebrados
8.
Elife ; 72018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30407909

RESUMEN

The assembly of neurotransmitter receptors in the endoplasmic reticulum limits the number of receptors delivered to the plasma membrane, ultimately controlling neurotransmitter sensitivity and synaptic transfer function. In a forward genetic screen conducted in the nematode C. elegans, we identified crld-1 as a gene required for the synaptic expression of ionotropic acetylcholine receptors (AChR). We demonstrated that the CRLD-1A isoform is a membrane-associated ER-resident protein disulfide isomerase (PDI). It physically interacts with AChRs and promotes the assembly of AChR subunits in the ER. Mutations of Creld1, the human ortholog of crld-1a, are responsible for developmental cardiac defects. We showed that Creld1 knockdown in mouse muscle cells decreased surface expression of AChRs and that expression of mouse Creld1 in C. elegans rescued crld-1a mutant phenotypes. Altogether these results identify a novel and evolutionarily-conserved maturational enhancer of AChR biogenesis, which controls the abundance of functional receptors at the cell surface.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Receptores Colinérgicos/metabolismo , Sinapsis/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Técnicas de Silenciamiento del Gen , Prueba de Complementación Genética , Cardiopatías Congénitas , Ratones , Células Musculares , Unión Proteica , Proteína Disulfuro Isomerasas/genética , Multimerización de Proteína
9.
G3 (Bethesda) ; 7(5): 1429-1437, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28280211

RESUMEN

CRISPR/Cas9 genome engineering strategies allow the directed modification of the Caenorhabditis elegans genome to introduce point mutations, generate knock-out mutants, and insert coding sequences for epitope or fluorescent tags. Three practical aspects, however, complicate such experiments. First, the efficiency and specificity of single-guide RNAs (sgRNA) cannot be reliably predicted. Second, the detection of animals carrying genome edits can be challenging in the absence of clearly visible or selectable phenotypes. Third, the sgRNA target site must be inactivated after editing to avoid further double-strand break events. We describe here a strategy that addresses these complications by transplanting the protospacer of a highly efficient sgRNA into a gene of interest to render it amenable to genome engineering. This sgRNA targeting the dpy-10 gene generates genome edits at comparatively high frequency. We demonstrate that the transplanted protospacer is cleaved at the same time as the dpy-10 gene. Our strategy generates scarless genome edits because it no longer requires the introduction of mutations in endogenous sgRNA target sites. Modified progeny can be easily identified in the F1 generation, which drastically reduces the number of animals to be tested by PCR or phenotypic analysis. Using this strategy, we reliably generated precise deletion mutants, transcriptional reporters, and translational fusions with epitope tags and fluorescent reporter genes. In particular, we report here the first use of the new red fluorescent protein mScarlet in a multicellular organism. wrmScarlet, a C. elegans-optimized version, dramatically surpassed TagRFP-T by showing an eightfold increase in fluorescence in a direct comparison.


Asunto(s)
Sistemas CRISPR-Cas , Caenorhabditis elegans/genética , Marcación de Gen/métodos , Fenotipo , ARN Guía de Kinetoplastida/genética , Animales , Proteínas de Caenorhabditis elegans/genética , Colágeno/genética , Genoma de los Helmintos
10.
J Cell Biol ; 202(3): 431-9, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23918937

RESUMEN

Katanin is an evolutionarily conserved microtubule (MT)-severing complex implicated in multiple aspects of MT dynamics. In Caenorhabditis elegans, the katanin homologue MEI-1 is required for meiosis, but must be inactivated before mitosis. Here we show that PPFR-1, a regulatory subunit of a trimeric protein phosphatase 4 complex, enhanced katanin MT-severing activity during C. elegans meiosis. Loss of ppfr-1, similarly to the inactivation of MT severing, caused a specific defect in meiosis II spindle disassembly. We show that a fraction of PPFR-1 was degraded after meiosis, contributing to katanin inactivation. PPFR-1 interacted with MEL-26, the substrate recognition subunit of the CUL-3 RING E3 ligase (CRL3(MEL-26)), which also targeted MEI-1 for post-meiotic degradation. Reversible protein phosphorylation of MEI-1 may ensure temporal activation of the katanin complex during meiosis, whereas CRL3(MEL-26)-mediated degradation of both MEI-1 and its activator PPFR-1 ensure efficient katanin inactivation in the transition to mitosis.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Microtúbulos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Animales , Caenorhabditis elegans/genética , Katanina , Complejos Multiproteicos/metabolismo , Fosforilación
11.
Proc Natl Acad Sci U S A ; 110(11): E1055-63, 2013 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-23431131

RESUMEN

The number of nicotinic acetylcholine receptors (AChRs) present in the plasma membrane of muscle and neuronal cells is limited by the assembly of individual subunits into mature pentameric receptors. This process is usually inefficient, and a large number of the synthesized subunits are degraded by endoplasmic reticulum (ER)-associated degradation. To identify cellular factors required for the synthesis of AChRs, we performed a genetic screen in the nematode Caenorhabditis elegans for mutants with decreased sensitivity to the cholinergic agonist levamisole. We isolated a partial loss-of-function allele of ER membrane protein complex-6 (emc-6), a previously uncharacterized gene in C. elegans. emc-6 encodes an evolutionarily conserved 111-aa protein with two predicted transmembrane domains. EMC-6 is ubiquitously expressed and localizes to the ER. Partial inhibition of EMC-6 caused decreased expression of heteromeric levamisole-sensitive AChRs by destabilizing unassembled subunits in the ER. Inhibition of emc-6 also reduced the expression of homomeric nicotine-sensitive AChRs and GABAA receptors in C. elegans muscle cells. emc-6 is orthologous to the yeast and human EMC6 genes that code for a component of the recently identified ER membrane complex (EMC). Our data suggest this complex is required for protein folding and is connected to ER-associated degradation. We demonstrated that inactivation of additional EMC members in C. elegans also impaired AChR synthesis and induced the unfolded protein response. These results suggest that the EMC is a component of the ER folding machinery. AChRs might provide a valuable proxy to decipher the function of the EMC further.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Complejos Multiproteicos/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Retículo Endoplásmico/genética , Humanos , Complejos Multiproteicos/genética , Pliegue de Proteína , Receptores Colinérgicos/genética , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo
12.
Nat Neurosci ; 15(10): 1374-81, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22922783

RESUMEN

Auxiliary subunits regulate the trafficking, localization or gating kinetics of voltage- and ligand-gated ion channels by associating tightly and specifically with pore-forming subunits. However, no auxiliary subunits have been identified for members of the Cys-loop receptor superfamily. Here we identify MOLO-1, a positive regulator of levamisole-sensitive acetylcholine receptors (L-AChRs) at the Caenorhabditis elegans neuromuscular junction. MOLO-1 is a one-pass transmembrane protein that contains a single extracellular globular domain-the TPM domain, found in bacteria, plants and invertebrates, including nonvertebrate chordates. Loss of MOLO-1 impairs locomotion and renders worms resistant to the anthelmintic drug levamisole. In molo-1 mutants, L-AChR-dependent synaptic transmission is reduced by half, while the number and localization of receptors at synapses remain unchanged. In a heterologous expression system, MOLO-1 physically interacts with L-AChRs and directly enhances channel gating without affecting unitary conductance. The identification of MOLO-1 expands the mechanisms for generating functional and pharmacological diversity in the Cys-loop superfamily.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/agonistas , Canales Iónicos/fisiología , Subunidades de Proteína/metabolismo , Receptores Colinérgicos/metabolismo , Animales , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Agonistas Colinérgicos/farmacología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/metabolismo , Resistencia a Medicamentos/genética , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Canales Iónicos/genética , Levamisol/farmacología , Locomoción , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Mutación , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Subunidades de Proteína/genética , Receptores Colinérgicos/genética , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
13.
Wiley Interdiscip Rev Dev Biol ; 1(1): 114-37, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23801671

RESUMEN

This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.


Asunto(s)
Caenorhabditis elegans/genética , Genes de Helminto , Animales , Mapeo Cromosómico , Hibridación Genómica Comparativa , Mutagénesis , Polimorfismo de Nucleótido Simple , Interferencia de ARN
14.
PLoS Biol ; 7(12): e1000265, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20027209

RESUMEN

In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Locomoción , Neuronas Motoras/metabolismo , Contracción Muscular , Receptores Nicotínicos/metabolismo , Acetilcolina/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Datos de Secuencia Molecular , Mutación , Receptores Nicotínicos/genética , Transmisión Sináptica , Xenopus , Ácido gamma-Aminobutírico/metabolismo
15.
Genetics ; 183(3): 917-27, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19737747

RESUMEN

Vertebrate and invertebrate genomes contain scores of small secreted or transmembrane proteins with two immunoglobulin (Ig) domains. Many of them are expressed in the nervous system, yet their function is not well understood. We analyze here knockout alleles of all eight members of a family of small secreted or transmembrane Ig domain proteins, encoded by the Caenorhabditis elegans zig ("zwei Ig Domänen") genes. Most of these family members display the unusual feature of being coexpressed in a single neuron, PVT, whose axon is located along the ventral midline of C. elegans. One of these genes, zig-4, has previously been found to be required for maintaining axon position postembryonically in the ventral nerve cord of C. elegans. We show here that loss of zig-3 function results in similar postdevelopmental axon maintenance defects. The maintenance function of both zig-3 and zig-4 serves to counteract mechanical forces that push axons around, as well as various intrinsic attractive forces between axons that cause axon displacement if zig genes like zig-3 or zig-4 are deleted. Even though zig-3 is expressed only in a limited number of neurons, including PVT, transgenic rescue experiments show that zig-3 can function irrespective of which cell or tissue type it is expressed in. Double mutant analysis shows that zig-3 and zig-4 act together to affect axon maintenance, yet they are not functionally interchangeable. Both genes also act together with other, previously described axon maintenance factors, such as the Ig domain proteins DIG-1 and SAX-7, the C. elegans ortholog of the human L1 protein. Our studies shed further light on the use of dedicated factors to maintain nervous system architecture and corroborate the complexity of the mechanisms involved.


Asunto(s)
Axones/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/fisiología , Inmunoglobulinas/fisiología , Animales , Animales Modificados Genéticamente , Axones/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Epistasis Genética , Eliminación de Gen , Prueba de Complementación Genética , Inmunoglobulinas/genética , Inmunoglobulinas/metabolismo , Modelos Biológicos , Mutación , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Transgenes/genética
16.
Proc Natl Acad Sci U S A ; 105(47): 18590-5, 2008 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-19020092

RESUMEN

Levamisole-sensitive acetylcholine receptors (L-AChRs) are ligand-gated ion channels that mediate excitatory neurotransmission at the neuromuscular junctions of nematodes. They constitute a major drug target for anthelminthic treatments because they can be activated by nematode-specific cholinergic agonists such as levamisole. Genetic screens conducted in Caenorhabditis elegans for resistance to levamisole toxicity identified genes that are indispensable for the biosynthesis of L-AChRs. These include 5 genes encoding distinct AChR subunits and 3 genes coding for ancillary proteins involved in assembly and trafficking of the receptors. Despite extensive analysis of L-AChRs in vivo, pharmacological and biophysical characterization of these receptors has been greatly hampered by the absence of a heterologous expression system. Using Xenopus laevis oocytes, we were able to reconstitute functional L-AChRs by coexpressing the 5 distinct receptor subunits and the 3 ancillary proteins. Strikingly, this system recapitulates the genetic requirements for receptor expression in vivo because omission of any of these 8 genes dramatically impairs L-AChR expression. We demonstrate that 3 alpha- and 2 non-alpha-subunits assemble into the same receptor. Pharmacological analysis reveals that the prototypical cholinergic agonist nicotine is unable to activate L-AChRs but rather acts as a potent allosteric inhibitor. These results emphasize the role of ancillary proteins for efficient expression of recombinant neurotransmitter receptors and open the way for in vitro screening of novel anthelminthic agents.


Asunto(s)
Antihelmínticos/farmacología , Caenorhabditis elegans/genética , Levamisol/farmacología , Receptores Colinérgicos/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Receptores Colinérgicos/biosíntesis , Receptores Colinérgicos/genética , Receptores Colinérgicos/fisiología , Xenopus laevis
17.
Nat Protoc ; 2(5): 1276-87, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17546024

RESUMEN

We describe a protocol for mutating genes in the nematode Caenorhabditis elegans using the Mos1 transposon of Drosophila mauritiana. Mutated genes containing a Mos1 insertion are molecularly tagged by this heterologous transposable element. Mos1 insertions can therefore be identified in as little as 3 weeks using only basic molecular biology techniques. Mutagenic efficiency of Mos1 is tenfold lower than classical chemical mutagens. However, the ease and speed with which mutagenic insertions can be mapped compares favorably with the vast amount of work involved in classical genetic mapping. Therefore, Mos1 could be the tool of choice when screening procedures are efficient. In addition, Mos1 mutagenesis can greatly simplify the mapping of mutations that exhibit low penetrance, subtle or synthetic phenotypes. The recent development of targeted engineering of C. elegans loci carrying Mos1 insertions further increases the attractiveness of Mos1-mediated mutagenesis.


Asunto(s)
Caenorhabditis elegans/genética , Elementos Transponibles de ADN/genética , Proteínas de Unión al ADN/genética , Mutagénesis Insercional/métodos , Transposasas/genética , Animales , Secuencia de Bases , Datos de Secuencia Molecular , Oligonucleótidos/genética , Reacción en Cadena de la Polimerasa/métodos
18.
Curr Biol ; 16(19): 1871-83, 2006 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-17027485

RESUMEN

BACKGROUND: The ventral midline is a prominent structure in vertebrate and invertebrate nervous systems that provides crucial topological information for guiding axons to their appropriate target destinations. Rather than being composed of specialized midline glia cells as in many other species, the embryonic midline of the nematode Caenorhabditis elegans is physically defined by motoneuron cell bodies that separate the left from the right ventral cord fascicles. Their function during development, if any, is not known. RESULTS: We show here that besides being components of the postembryonic locomotory circuit, these embryonic motoneurons (eMNs) actively provide midline guidance information for a specific subset of ventral midline axons. This information is provided in the form of a novel, cell-surface-anchored immunoglobulin superfamily (IgSF) member, WRK-1. WRK-1 acts in eMNs to prevent follower axons from inappropriately crossing the ventral midline. We describe the function of the Eph receptor vab-1 and multiple ephrin ligands at the midline, and we show by double mutant analysis and physical interaction tests that WRK-1 functionally interacts with the Eph receptor system. This interaction appears to occur exclusively in the context of axon guidance at the ventral midline but not in other cellular contexts, thereby suggesting that Eph receptor signaling is mechanistically distinct in different tissue types. CONCLUSIONS: Our studies reveal cellular and molecular components of axon midline patterning and suggest that Ephrin signaling relies on previously unknown accessory components.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/embriología , Neuronas Motoras/fisiología , Proteínas del Tejido Nervioso/fisiología , Sistema Nervioso/embriología , Receptores de la Familia Eph/metabolismo , Animales , Axones/metabolismo , Tipificación del Cuerpo/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiología , Efrinas/metabolismo , Ligandos , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores Inmunológicos/fisiología , Transducción de Señal , Proteínas Roundabout
19.
J Neurophysiol ; 95(6): 3665-73, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16554520

RESUMEN

Postembryonic developmental changes in electrophysiological properties of the AIY interneuron class were investigated using whole cell voltage clamp. AIY interneurons displayed an increase in cell capacitance during larval development, whereas steady-state current amplitude did not increase. The time course of the outward membrane current, carried at least in part by K+ ions, matured, from a slowly activating, sustained current to a rapidly activating, decaying current. We also investigated how the development of capacitance and outward current was altered by loss-of-function mutations in genes expressed in AIY. One such gene, the LIM homeobox gene ttx-3, is known to be involved in the specification of the AIY neuronal subtype. In ttx-3 mutants, capacitance and outward current matured precociously. In mutants of the gene wrk-1, an immunoglobulin superfamily (IgSF) member whose expression is regulated by ttx-3, capacitance matured normally, whereas outward current matured precociously. We conclude that AIY interneurons contain distinct pathways for regulating capacitance and membrane current.


Asunto(s)
Envejecimiento/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Membrana Celular/fisiología , Interneuronas/fisiología , Potenciales de la Membrana/fisiología , Transducción de Señal/fisiología , Animales , Caenorhabditis elegans , Células Cultivadas , Capacidad Eléctrica , Retroalimentación/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Larva/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA